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Unfolding of proteins : Thermal and mechanical
unfolding

By Joe S. Hur & Eric Darve

1. Motivation and Objectives

Over the past few decades, researchers have sequenced the human genome which is a
blueprint for proteins. However, given only the information of the sequence we cannot
yet accurately predict specific structural information such as the secondary and tertiary
structure of a given protein, let alone its functionality in biological processes. Recent
theoretical and experimental findings have shown that the topology or conformation of
the native structure of small proteins plays a critical role in determining its biological
function (Baker 2000; Alm & Baker 1999). In order to carry out their biological function
properly, proteins must assume a shape, assembling themselves into an ordered struc-
ture. It is now well known that depending on the topology of proteins, for example,
when proteins do not fold correctly, there can be serious medical complications, such as
Parkinson’s disease, Alzheimers to name a few. Furthermore, more biophysical manifesta-
tions of protein-protein interactions are reflected in processes related to phase equilibria
such as crystallization, and in the marked dependence of the diffusion coefficients of
macromolecules on their concentration (Price et al. 1999). The latter aspect is currently
becoming of much interest to biologists and chemists with advances in techniques for
monitoring protein diffusion in the crowded cellular environment (Dayel et al. 1999).

With ever increasing areas of interest in biomedical applications as mentioned above,
much effort has been put into understanding the mechanism of protein folding. However,
at present, there exists neither a simple and universally applicable theoretical framework
nor an efficient and accurate computational framework that can account for many exper-
imental findings. Current theories resort to mathematics that vary greatly in complexity
and analytic tractablity in order to solve technical difficulties inherent in the problem or
start from a phenomenological model (Wolynes et al. 1995; Clementi et al. 2000). On the
computation frontier, with advances in computational resources, we are now equipped
with better tools to tackle complex problems that are numerically expensive. However,
for example, there is much controversy over the correct form of potential in the force field
in molecular dynamics (Baker 2000) and folding proteins using Monte-Carlo simulation is
still expensive to be applied to bigger proteins - the folding time scales for these proteins
lie between a few milliseconds to minutes. Solving for the stable structures of the isolated
proteins should not be the final aim for computer simulations. After all, proteins perform
their biological function by interacting with other macromolecules through, for example,
electrostatic and non-polar interactions, and thus a clear physical understanding of such
phenomena is needed.

Our goal is to understand the mechanisms of protein folding-unfolding in the presence
of an external force field - e.g. mechanical, and electrostatic fields - and to investigate
the differences in the pathways of force-induced unfolding and thermally or denaturant-
induced unfolding. For example, mechanical stability is very important for proteins that
form muscle fibres, like myosin and kinesin, and for those that have to withstand forces
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like cell-adhesion molecules that stabilize and form the contact between cells in tissues.
Having a clear understanding of the mechanisms of unfolding will provide us with a
means to design proteins to carry out specific functions as well as to tackle more complex
problems that remain unsolved. A few examples of the latter include understanding how
a substrate may be attracted to the active site of an enzyme by electrostatic interactions
and how the local and global structures of proteins change upon ligand docking.

Recently, relevant to this work, researchers have used atomic force microscopy (AFM)
and optical tweezers for dynamic measurement of mechanical unfolding of individual Titin
immunoglobulin domains at the single molecule level (Rief et al. 1997; Kellermayer et al.
1997; Tskhovrebova et al. 1997). The widely studied protein Titin is a giant 3 MDalton
muscle protein and a major constituent of the sarcomere in vertebrate striated muscle. It
is a multi-domain protein which forms filaments approximately 1 pm in length spanning
half a sarcomere and has a number of functions including the control of assembly of muscle
thick filaments, a role in muscle elasticity and the generation of passive tension. Of the
two regions - the I-band and the A-band - we are interested in the I-band of Titin because
it plays an important role in muscle elasticity. The I-band is composed of a head to tail
linear array of immunoglobulin domains interrupted at intervals by less highly structured
linker sequences. All of the immunoglobulin domains are predicted to have the same basic
structure. The notation ’I127’ is used to represent the 27th domain of the Titin I-band.
The wild type Titin protein is far too large for its thermodynamic and kinetic properties
to be studied in detail using current techniques, however its multi-domain structure
allows investigation of its properties by characterization of the constituent domains in
isolation. This approach is frequently used for proteins where, to a first approximation,
the domains behave independently.

An interesting aspect of the recent studies of Titin concerns the highly cooperative
manner in which the domains break. However, the structural changes under mechanical
forces could only be inferred from the force-extension curves in the experiment and for
example, the stability of the individual beta-sheets could not be examined. To support
the experimental findings using Titin, steered molecular dynamics (SMD) simulations
showed that the force-induced unfolding of Titin domains is an all-or-none event, lacking
stable intermediates (Lu et al. 1998). However, a more recent study by Paci et al. showed
in their simulation a more complex behavior of force-induced unfolding in contrast to
the simple sawtooth profile observed in the unfolding experiments and claimed that in
those experiments only the onset of the unfolding of individual domains in multi-domain
proteins was revealed (Paci & Karplus 2000).

Even though the experimental and theoretical investigations up to date have given
us valuable information on force-induced unfolding of small proteins, the tools to probe
multiple kinetic pathways, more complex structures and stability of domains in bigger
proteins that carry out biological functions upon docking (where they have to assume a
particular partially unfolded shape) are yet to be developed. In this article, we present
a Hamiltonian model which builds on the important interactions of the native-state
topology. We make a Gaussian approximation within the model such that the contact
probabilities are determined self-consistently, in a spirit similar to a local mean-field
approximation.

The paper is organized as follows. In §2, we describe our mathematical formulation.
The Hamiltonian is defined and the self-consistent Gaussian approximation is introduced
in calculating the contact pair probabilities. In §3.1 we present results for the equilibrium
properties of several globular proteins and the immunoglobulin domain of Titin. Both
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structural and thermodynamic quantities are examined. In §3.2 the thermal denaturation
of the immunoglobulin domain of Titin is investigated. In particular, the stability of
the six sheet interactions are examined. In §3.3 the results for pulling the ends with
constant mechanical forces of a single immunoglobulin domain of Titin are presented
and compared to the experimental findings as well as the results in §3.2. We conclude
with a brief summary in §4.

2. Method

In our formulation, the Hamiltonian for a given protein of N residues consists of three
energy contributions as shown in eqn.(2.1). The first term refers to the energy fluctuations
of adjacent residues with respect to the native state. The second term denotes pairwise
interactions between non-adjacent (non-consecutive) residue pairs and the last term is
the imposed external force field which is assumed to be linear for direct comparison to
experiment by Rief et al. (1997); Kellermayer et al. (1997); Tskhovrebova et al. (1997).

N-1

kg - max(T, Tyin o R
H="= 2( ) ZK(tH—l—ti)Q
i=1
A L oL
— Z %[RQ — (t: = t;)%]O[R* — (t; — t;)] + FTt (2.1)
4,J

In eqn.(2.1), t; denotes the position vector of residue 7 relative to its native state. Ayj is
the contact matrix of all residues in the native state and © is the Heaviside step function,

which is defined as :
0 ifz<0
o — - 2.2
(z) {1 if 2 > 0. (22)

We determine A;; from the native state structures of proteins from the Protein Data
Bank (PDB). We assign a value of 1 to residue pairs whose a-carbons(Cl,) are separated
by less than 6.54 and 0 otherwise.

In our formulation, pairwise interactions that are separated beyond a cut-off radius of
R do not contribute the total energy of the system. We set R to 34 in all calculations.
Note that the distance between two adjacent a-carbons is 3.784 and 3.63A4 in a trans
and cis configuration respectively. On the other hand, pairwise interactions within the
cut-off radius are modelled to vary quadratically with A;;, the contact matrix, given as
the weight factor. The requirement for a minimum cut-off temperature, T',;y, is to ensure
that at low temperatures the ratio between the energies arising from the fluctuations of
adjacent residues and other energy contributions is finite. Note that in our formulation
without specifying a cut-off temperature, C,, diverges as temperature approaches zero.
We determine T),;, from the mimina (Ba(’%’ = 0) in the heat capacity constant C, -
temperature curves (C, versus T') for each protein. We calculate the heat capacity from
the following relation,

0*F
C, =T, 2.
where F' is the total free energy. The second derivative is calculated using a fourth order
finite difference scheme.

Due to the symmetry of the Hamiltonian, the corresponding partition function Z is
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singular.

7= / I1,d7 exp(— BH(7) (2.4)

By adding an additional spring to the first term in eqn. (2.1), one can break the symmetry
in the Hamiltonian and easily decouple the extra energy contribution in the total free
energy, where the free energy is related to the partition function Z as :

F=-Tl(Z)=-Th </ L, dr cxp(—ﬂH(F‘))) . (2.5)

The modified Hamiltonian is given by,

kg - max(T, Tpuin i - R
H=-" 2( )[Z K (tiy1 — 1) + KR
i=1
A LS O
-> 2J [R% — (; — ;)%|O[R* — (f; — ;)] + FTt (2.6)
53

where K is the spring constant for the artificially added spring t%,. By making use of
the self-consistent Gaussian approximation,

pij =< O[R* — (t; — 1;)*] >, (2.7)
Eqn.(2.6) can be rewritten in a compact matrix form as follows:

GH = (1 — GMF)TM Mt~ AMF) — L °F" MF. (28)

B is the inverse temperature (1/kpT) where kp is set to unity for convenience and the
inverse of matrix M is defined as :

K

B 2

—2
+(1 - 5z‘j)(Tpiinj + K(8;-1— 6 j41))- (2.9)

In eqn.(2.9), 6;; is the Kronecker delta and p;; denotes the contact probability of the
residue pair ¢ and j. The probability density function of ¢ is then given by,

P() = (2m) % (det M)~ % exp(f%(t —BMF)" M~ (t — BMF)). (2.10)

Previously, Micheletti et al. have proposed a self-consistent pair probability approxi-
mation for examining equilibrium properties of proteins, and we will follow the same
methodology (Micheletti et al. 2001). First the contact pair probability is given by

pij = (27r)BzN(detM)g/t_t_KRdeukexp(;(tﬁMF)TMl(tﬂMF)). (2.11)

Physically, p;; corresponds to the pair contact probability of residue ¢ and j that are
separated by less than R = 34, and thus is a measure of the structural and conformational
deviation from the native state. By making a self-consistent Gaussian approximation for
pi; with the given Hamiltonian in eqn.(2.6), we can calculate p;; in an iterative manner.
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FIGURE 1. Free energy (F™) versus temperature. Each free energy contribution is also plotted.

First, we transform eqn.(2.11) into spherical coordinates,

3
1 \? . - o
P = (27TGij> /®(R2 — |7+ Lij|*) exp > dr. (2.12)
In eqn.(2.12), G;; is defined in terms of the matrix M,;,
Gij = Mii + Mj; — 2M;, (2.13)

and Eij is the imposed force field defined as

—

- F
L;; = T(Mﬂ — M;n — Mj1 + M;n) (2.14)

for the case of pulling the ends of a protein equally with a force vector F. By utilizing the
isotropicity of spherical coordinates, eqn.(2.12) can be further simplified and expressed
as a series of Incomplete Gamma function of order 3 i.e., Py () which is defined as :

L Rt
Py(z) = ﬁ/o exp 't 2dt, (2.15)
and p;; is given by :

v/ Gij { ,(R;éw? (Rz_éL)T
pij = ——— |exp ii —exp i
Y /2L

() o (50 (5]

In the case of no applied force, eqn.(2.16) reduces to

2 R?
e Ps | —— 2.1
Pa= a3 [QGM]’ (217)

where Ps is the incomplete Gamma function of order 2 5.

We first start each calculation by initializing all p;;’s to 0.5. Two different initial values
of 0.25 and 0.75 were used to ensure that the results are independent of initial conditions.
The matrix Mif is then constructed using the initial values of p;;’s and the contact
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FIGURE 2. Total free energy (F7) versus the fraction of native contacts (Q) for protein 1SHG
and 1A2P.

matrix A;;. The native state structure for each protein was taken from the Brookhaven
Protein Data Bank (PDB) and was first analyzed in a separate subroutine where the types
of amino-acid were identified and the distance between all pair residues was calculated and
recorded to construct the contact matrix A;;. We have employed a more refined discrete
scheme of constructing the contact matrix - where depending on the type of amino-acid
and distance between two residues, discrete leveled amino-acid interactions are taken into
account - but only minor quantitative differences were observed between the two schemes.
LU decomposition is employed to invert the symmetric matrix Mi;I(Press et al. 1992).
The new p;;’s are then calculated using eqn.(2.16) with the inverted matrix M;; where
the incomplete Gamma functions are evaluated using two different schemes, i.e. a fast
converging series expansion and 50-point Gaussian quadrature (Press et al. 1992) to check
numerical accuracy. The iteration continues until the differences between the previous
and current values for all p;;’s are below a prescribed tolerance §. We used § = 1076 for
equilibrium and thermal unfolding, and 10~° for mechanical unfolding calculations and
convergence was achieved within a dozen (10 — 40) iterations.

3. Results

In this section, we apply the model to examine the equilibrium and non-equilibrium
properties of several proteins. First, the equilibrium properties - both structural and
thermodynamic - are presented. We determine the folding temperature in a systematic
way as outlined in the previous section and calculate each free energy contributions
arising from the Hamiltonian model. By varying the temperature, we further investigate
the thermal denaturation of the immunoglobin (Ig) domains of Titin (1TIT). Finally the
ends of the Ig domains are pulled mechanically and the unfolding mechanism as well as
the stability of six key (-strands are studied.

3.1. Equilibrium
Following the steps in §2, we examine the equilibrium properties of the globular protein
2CI2, 1SHG and barnase (1A2P) and the immunoglobulin domain of Titin (1TIT). The
remaining parameters we have to set in the Hamiltonian in eqn.(2.6) is the strength of
the peptide strength K and K, for the artificially added spring. Physically, a larger K
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FIGURE 3. Heat capacity versus temperature for 2ci2 with varying peptide strength parameter
K.

corresponds to a more rigid rod-like bond. The parameter K for the artificially added
spring can be set to any non-zero value. The extra free energy due to this spring is Fa:

%T} : . (3.1)

FA= Thn(Z)=-T1
n(Z) H[Ks

In all our calculations the total free energy FT is calculated by subtracting the extra free
energy F4 :

FT = pH _ A, (3.2)
where F' is the corresponding total free energy to the Hamiltonian in eqn.(2.6) given
by,

3N

FH=_2"
2

; (3.3)

.3

3
3 R? 27T |2
In(2m)T — 3 In(det M)T — — Z Aijpij —Tln [ 7 ] )

S

The free energy (F'*) and the individual energy terms in eqn.(3.3) for the protein 1A2P
are shown in Fig.(1). Given our Hamiltonian, there are free energies associated with the
consecutive pair interactions (the first term in eqn.(3.3)), and those arising from the
non-consecutive pairwise interactions (the second and the third term) as well as those
due to the artificial anchoring (the last term). In Fig.(2), the total free energy (F7) is
plotted versus the fraction of native contacts @ for the protein 1ISHG and 1A2P, where
Q is defined as :

0= Em/AijPij.
In eqn.(3.4) the prime denotes that sum is carried out over only non-consecutive pairs.
Previously, Micheletti et al. have used used a value of K = 1—15 by inspecting the behavior
of the fraction of native contacts (Q) as defined in eqn.(3.4)(Micheletti et al. 2001). In
this work, three values of K were used - %, 3—10 and %. In Fig.(3), we plot the heat
capacity as a function of temperature with varying peptide strength parameter K for the
protein 2CI2. The maximum of the heat capacity corresponds to the folding temperature
which is defined as the temperature at which a protein is equally likely to be either in a

(3.4)
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FIGURE 4. The fraction of native contacts (Q) versus temperature for the protein 1A2P.

folded or unfolded state. At the folding temperature the fraction of native contacts was
shown to be around 0.5 in previous studies (Clementi et al. 2000; Micheletti et al. 2001;
Plaxco et al. 1998; Chan & Dill 1998). To verify if the chosen range of the K parameter
yielded consistent results with previous observations, we calculate the fraction of native
contacts @ for 1A2P whose folding temperature was T = 16.25 for K = 1—15 At the
folding temperature Q is 0.56 as shown in Fig.(4). Note that the folding temperature
is not a sensitive function of the peptide strength parameter K as the location of the
maxima in heat capacity in Fig.(3) did not shift with different values of K. Next we
calculate the equilibrium properties of the immunoglobulin domain of the protein Titin.
The folding temperature was determined as above from the C,-T plot and in Fig.(4)
the fraction of native contacts @ is plotted versus temperature. Whereas @ is a global
ordering parameter that measures the deviation of an entire folded protein domain from
the native state, a more relevant local ordering parameter that monitors the deviation
of each residue in the protein from its native state is P; defined as :

ERTAI

The local ordering parameter P; is shown at the folding temperature in Fig.(5). Note
that the eight § strands are (in the order of first residue number - last residue number
in the strand for each strand and in the parenthesis the type of amino acid) : 4(VAL)-
7(PRO), 11(VAL)-15(VAL), 18(THR)-25(LEU), 32(GLY)-36(LEU), 47(CYS)-52(ASP),
55(LYS)-61(HIS), 69((GLY)-75(ALA) and 78(ALA)-88(GLU). We can clearly see that
each strand exhibits different degrees of ordering at the folding temperature. In the next
section, we examine the thermal denaturation of the same domain of Titin (1TIT).

3.2. Thermal Unfolding

The eight S-strands in the immunoglobulin domain of Titin are stabilized via hydrogen
bonding. The six interacting residue pairs are : 6-24, 11-85, 19-60, 35-72, 48-59 and 69-84.
The corresponding strand-strand or sheet interactions are denoted as : AB, A’G, BE, CF,
DE and FG. First we vary the temperature to examine both the global (@) and local
(P;) ordering. As shown in Fig.(6) as the temperature increases, the global ordering is
slowly destroyed and at about twice the folding temperature (7 = 17.75), the protein
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FIGURE 6. The fraction of native contacts (Q) versus temperature for the protein 1TIT.

has almost denatured. The individual residues which are in the ordered state at low
temperatures (for example at 0.357 = 6.21) slowly denature from the native state with
varying degrees of ordering at high temperatures. Another global parameter to monitor
the denaturation process is the size of the domain as a function of temperature which
can be calculated by the following relation,

S*(T) = 3Gin(T) + S2 (3.6)

where S? is the mean square of the end-to-end distance of the protein and the subscript
o denotes the native state, and Gy is the component (1, N) of the matrix G;; as defined
in eqn.(2.13). In Fig.(8), the extension versus temperature is shown and we see a smooth
growth of the domain with increasing temperature. Note that at 277 = 35.5, the domain
size has increased only by 5% compared to Ty = 17.75. The six sheet interactions repre-
sented by the six individual pair interactions are shown in Fig.(9). The sheet interaction
FG (69-84) is the most stable interaction over the entire temperature range and A’G is
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FIGURE 7. Local ordering parameter P; for 1TIT with varying temperature near the folding
temperature.
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FIGURE 8. Domain size as a function of temperature for 1TIT.

the least stable interaction at low temperatures. Near the folding temperature all five
interactions except for FG are comparable in strength.

3.3. Mechanical Unfolding

In this section we apply mechanical forces to the immunoglobulin domain of Titin. The
experiments mentioned in §1 used two different tools to probe the unfolding pathways
of the same molecule. Pulling the ends of it showed that the series of individual im-
munoglobulin domains open one by one. Also the protein domains were shown to resist
a mechanical force of the order of a few hundreds of piconewtons (pN) after which one
domain unfolds causing a reduction in the applied force. Further extension gradually
increases the applied force until another domain unfolds. This stepwise single domain
unfolding results in a so called saw-tooth pattern. The six sheet pair contact probabilities
are shown in Fig.(10). The interaction A’G is the most unstable one below F' = 3.7, which
corresponds to a dimensional force of 150pN. The interaction AB is lost at F' =~ 150pN,
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suggesting the two O-strands A and B are no longer in contact. At F' = 5.16(212pN) the
entire immunoglobulin domain is unfolded as seen from the vanishingly small contact
pair probabilities for all six sheet interactions. This finding that the sheet interaction
A’G and AB are the least stable ones is consistent with the results obtained from steered
molecular dynamics by (Lu et al. 1998). The fraction of native contacts (@) as larger
forces are applied is shown in Fig. (11). Compared to Fig. (6), we see discrete jumps in
the total nativeness of the protein domain.

To directly compare to previous experimental findings (Rief et al. 1997; Kellermayer
et al. 1997; Tskhovrebova et al. 1997), we calculate the mean square end-to-end distance
in the case of a constant pulling force F at the ends of a protein, which is given by,

S*(T) = 3Gin(T) + |95 + Lin|? (3.7)

where L is defined in eqn.(2.14). In Fig.(12), the end-to-end distance is plotted as a
function of the applied pulling force. We observe similar stalls in the plot where the
domain size increases but the force remains constant. Related to the stability of each
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sheet interaction, we conclude that the first force stall in Fig.(12) is due to the breakage of
the hydrogen bonding pair in the AB sheet (residue pair 6-24). The AB sheet completely
breaks at F' = 3.7 and at F' = 5.16(210pN), the six sheet interactions are destabilized
and the entire immunoglobulin domain is open. After the critical force of F' = 5.16, the
linear growth in extension isintrinsically due to the quadratic potential of the residues
as given by the Hamiltonian (see eqn.(2.6)).

4. Conclusions

We have employed a Hamiltonian model based on a self-consistent Gaussian appoxima-
tion to examine the unfolding process of proteins in external - both mechanical and ther-
mal - force fields. The motivation was to investigate the unfolding pathways of proteins
by including only the essence of the important interactions of the native-state topology.
Furthermore, if such a model can indeed correctly predict the physics of protein un-
folding, it can complement more computationally expensive simulations and theoretical
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work. The self-consistent Gaussian approximation by Micheletti et al. has been incorpo-
rated in our model to make the model mathematically tractable by significantly reducing
the computational cost. All thermodynamic properties and pair contact probabilities are
calculated by simply evaluating the values of a series of Incomplete Gamma functions
in an iterative manner. We have compared our results to previous molecular dynamics
simulation and experimental data for the mechanical unfolding of the giant muscle pro-
tein Titin (1TIT). Our model, especially in light of its simplicity and excellent agreement
with experiment and simulation, demonstrates the basic physical elements necessary to
capture the mechanism of protein unfolding in an external force field.
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